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It is shown that new parameters X can be defined such that the heat capacity 
Cx-T(OS/6T)x is negative, even when the canonical ensemble [i.e., at fixed 
T= (OU/OS)y and Y r  is stable. This implies an extension of the classical 
theory of polytropes from ideal gases to general fluids. As examples of negative 
heat capacity systems we treat blackbody radiation and general gas systems 
with nonsingular K r. For the case of a simple ideal gas we even exhibit an 
apparatus which enforces a constraint X(p, V)= const that makes Cx < 0. We 
then show that it is possible to infer the statistical mechanics of canonically 
unstable systems--for which even the traditional heat capacities are 
negative--by imposing constraints that stabilize the associated noncanonical 
ensembles. Two explicit models are discussed. 
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1, I N T R O D U C T I O N  

The idea of negative heat capacities is by now well known for black holes (~) 
and for interacting classical systems like stars (R) and certain models of 
plasma (ref. 3, Fig. 8). The physical realization of many familiar ther- 
modynamic constructions is problematic in the first two cases because of 
the important role played by gravitation. (4) In view of the long-range and 
universal character of this interaction it is very doubtful that a thermal 
reservoir which is large enough to enforce a sharply defined temperature 
would not also completely dominate the gravitational dynamics of any 
small system to which it was coupled. This is an important practical 
proNem in the thermodynamics of gravitation, but it should not be 
allowed to obscure the fundamental problem that a system whose heat 
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capacity is negative cannot reach thermal equilibrium even with an 
idealized reservoir. 

The physical argument is that a system with negative heat capacity 
warms up by losing heat and cools down by gaining it. If heat flows 
from hot to cold, then any temperature difference with respect to the 
reservoir will engender heat flows which increase the difference. The mathe- 
matical argument proceeds by contradiction. Let H represent the system's 
Hamiltonian and let Y stand for one or more of the usual extensive 
parameters in addition to the energy. [This discussion can be generalized 
to include the case where any of the extensive parameters Yi is replaced by 
its intensive conjugate, Pi = (~?U/~? Yi); see, for example, ref. 5. ] If the system 
is in equilibrium with a reservoir at fixed Y and fixed temperature 
T= (~U/OS)r, then elementary statistical mechanics gives the canonical 
partition function: 

Z(T, Y) - Tr(e-~~ (1.1a) 

where fl = 1/kB T and the trace extends over all states of fixed Y. Taking the 
logarithm gives - f l  times the Helmholtz free energy, F(T, Y). Using the 
standard formulas for the entropy and heat capacity, S =  -(~F/~T)r and 
Cy = T(OS/OT)r, we find that the usual heat capacity is proportional to 
the variance of the energy: 

Cr=kHfl 2 \  ~f12 j r=kBf l : ( (  I2I - ( /~) )2)r , r  (1.1b) 

This is a manifestly positive quantity, so the assumption of thermal 
equilibrium must be erroneous whenever Cr  is negative. 

In view of the preceding arguments it is usually assumed that systems 
with negative heat capacity can be treated statistically only in the 
microcanonical ensemble. We have just seen the problem when it is a usual 
heat capacity C r, but one might ask how the matter stands for a more 
general heat capacity Cx-T(~S/~T)x ,  where X is not restricted to be a 
normal extensive parameter of the canonical ensemble. The answer is that 
quantities X can always be defined such that Cx is less than zero, even 
when Cy is positive and the canonical ensemble is completely stable (ref. 6, 
pp. 42, 45). Examples of functions X will be given below. The physical 
picture is of a system coupled to a reversible work source that adds or 
withdraws energy so as to keep some quantity X fixed. The system will 
have Cx < 0 if the constraint X = const is chosen so that any heat flow from 
the reservoir is overbalanced by the work drawn off by the reversible work 
source. 
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We will prove the existence of such constraints generally in the context 
of normal thermodynamics where the natural extensive parameters are 
internal energy and volume. This context entirely avoids systems based 
upon the sort of long-range and universal forces that would mediate strong 
interactions with the reservoir. We first give the general solution under the 
assumption that the isothermal compressibility [~T = --(1/V)(~v/Op)r] is 
nonsingular; then we give a detailed mechanical realization of such a 
constraint for the simple ideal gas. To illustrate that singular xT need not 
pose a problem, we show how negative heat capacities can be defined also 
for blackbody radiation. 

Although our parameters X can be extensive, for canonically stable 
systems they necessarily exhibit the following properties in contrast to the 
usual parameter Y (=  V, for example): 

r:f u  ov 

The final inequality means that the statistical ensemble at constant T and 
X is not weighted by the Boltzmann factor of (1.1a), as is the ensemble at 
constant Y. In fact the ensemble at constant X fails even to exist; the 
instability of any such system can be seen from the previously cited physi- 
cal argument. Our results are nonetheless derived using the fundamental 
relation obtained from the canonical ensemble at fixed T and V. This 
suggests that by choosing different extensive parameters one might be able 
to explore the statistical mechanics of a system with negative Cv--in which 
case it would be the noncanonical ensemble at fixed T' and X which would 
exist rather than the canonical ensemble at fixed T and V--without 
recourse to the microcanonical ensemble. After completing our discussion 
of how to constrain instabilities into a canonically stable system we shall 
discuss two canonically unstable systems for which we can define stable 
ensembles by means of very simple constraints. 

2. T H E R M O D Y N A M I C S  

Let X(p, V) be some function of pressure and volume. Then one can 
write for the incremental heat input into the system (ref. 6, problem 13.t, 
pp. 11, 22) 

TdS CvdT+lvdV=[Cv+ ~ l (OV~ = V\oxjrdX (2.1a) 
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@ 
= C p d T + l p d p = [ C p + l p ( - ~ ) x ] d T + l p ( ~ x ) T d X  (2.1b) 

= Cx dT+ lx dX (2.1c) 

where lx is the appropriate "latent heat." The two expressions which result 
for lx are 

I x  = v 7" \ ~ T J  ~ v 

Their consistency is a simple consequence of the reciprocity theorem: 

Note that lx dX is not generally the work done on the system, although 
lv dV= p dV for the special case of the simple ideal gas. From (2.1) we can 
infer two expressions for Cx: 

C x = C v + l v ( ~ x  (2.4a) 

=Cp-4-lp(~ x (2.4b) 

Subtracting Cv from (2.4a) and taking the ratio with (2.4b)-(2.4a) gives 

where 

C x -  C v 1 Cx 7 - 0 
C p - C v  1 - 0 '  i.e., C v -  0 - 1  (2.5) 

lp @ ~ @ 

Note that 0 depends only upon the definition of X and an equation of state 
relating V, p, and T. 

The generalized heat capacity C x was introduced long ago (ref. 6, 
problems 9.11 and 9.22, pp. 42, 45). It has also been studied recently in the 
context of enforced adiabats, i.e., processes in which differential heat flow 
can occur along a path provided the initial and final entropies are equal. ~7) 
If X is a function of p alone, then 0 = 0 and Cx = ?Cv = Cp. Also one sees 
from (2.6) that if X is a function of V only, then 0 --* Go, and Fig. 1 confirms 



Classical Fluids of Negative Heat Capacity 365 fi 

i/ e 
Fig. 1. Plot of the generalized heat capacity C x (in units of Cv) versus the quantity 0 defined 
in Eq. (2.6). Note that each value of 0 corresponds to a different choice of the quantity 
J((p, V) which is held fixed. 

Cx -~ Cv. Thus Cx covers a range of heat capacities which include Cv (at 
0 ~ )  and Cp (at 0 = 0 ) .  

If one assumes with Emden a special fluid with internal energy propor- 
tional to the absolute temperature and pV= HT (H a constant), which are 
his assumptions A and B (ref. 8, pp. 6, 7), one finds of course again Fig. 1. 
The results here represent a generalization. Our notation Cx, O, ~ is 
7, k, ~c respectively in Emden. His Fig. 1 (ref. 8, p. 16) is equivalent to our 
Fig. 1, but holds only for his special case. Further, whereas we do not 
restrict Cx, Emden's interest is in polytropes, and so he states his 7 to be 
a constant. For  this reason his interest in negative heat capacities is also 
only incidental. Emden's Fig. 1 is not well known, as it does.not appear 
either in Emden's or Chandrasekhar's review, (9) and we are indebted to a 
referee for drawing attention to it. 

To show that negative values are possible, note that Cx < 0 if and only 
if 1 < 0 < 7. Now let 0o be a constant in this range and consider the relation 
0 =  0o. Identification of the isothermal compressibility K r and simple 
applications of the reciprocity and inverse theorems give 

Kr(p, V) tOVjp- O(~p~v (2.7) 

This is a linear partial differential equation with possibly nonconstant but 
certainly nonzero coefficients. We can of course freely specify X(po, V) for 
some fixed pressure Po and the general solution follows by exponentiation: 

X(p, V)= P exp dz ~cr(z, V) V Z(po, V) (2.8a) 
0 
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The symbol "P" stands for "path-ordering." It means that the various 
noncommuting factors of ~:r(z, V) V@/@V are to be ordered according to 
the z integration with those nearer z = p to the left of those nearer z = P0. 
Generally if (9(z) is an operator or matrix-valued function of z, then one 
makes the following definition: 

P(exp[f~dz(9(z)l) 

~-~ dz 1 dz2" '"  dzn(Q(Zn) (Q(Zn_l ) . . . (Q(Zl )  ( 2 . 8 b )  
n = 0  1 n 1 

To make the preceding discussion more concrete, suppose that the 
entropy has the form appropriate  to a simple ideal gas: 

S(U, V, N)= kBNln [(a U) 1/('-1) V] (2.9) 

where N is the number  of particles and a is related to the chemical constant 
i. In fact, if 7 = 5/3, then a = 2/3(kB) -s/3 exp(2i/3). A simple exercise reveals 
that ~ r =  lip. Substituting this into expression (2.8a) gives 

X(p, V)= X(Po, V~ P ]~/~176 (2.10) 
L~oJ / 

In other words, X(p, V) can be any function of Vp ~/~176 Since keeping J( 
fixed is the same as keeping Vp ~/~176 fixed, we can make X extensive by 
taking X(p, V) = Vp ~/~176 In fact, the negative nature of Cx can be obtained 
directly and very simply from this expression for X(p, V). 

3. A DEVICE D E M O N S T R A T I N G  H O W  X CAN BE KEPT 
C O N S T A N T  

A primitive apparatus is depicted in Fig. 2. A thermal reservoir of 
temperature Tres surrounds a large, diathermal cylinder of cross-sectional 

Tres 

voc  

T 
res 

Fig. 2. Sketch of a system which realizes negative heat capacity using a simple ideal gas. 
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area A. The cylinder contains a movable piston which is attached to a 
spring whose force constant k can be stiffened or loosened by winding or 
unwinding the coils of the spring. The piston seals a fixed quantity of the 
gas into one end of the cylinder while the other end is vacuum. Transducers 
measure the length L of the gas-filled section and the pressure, p -  kL/A. 
These transducers control the winding mechanism which adjusts the 
spring's force constant according to the rule 

ko 
k ( L )  = Loo+ ~ (3.~) 

where ko is a constant. It is easy to see that this serves to maintain the 
constraint Vp 1/~176 = const. 

To determine the state of the system, we allow energy to flow so as to 
maximize the total entropy of the three components: the gas, the spring, 
and the reservoir. The energy of the spring is simple to compute from 
Hooke's law: 

Since 

f~ 1 UsprJng = dx k(x) x = const 0o - 1 p V (3.2) 
0 

it follows that 

1 
Ugas : 1 :~ - 1 p V  

7 - 1  
Uspring = c o n s t -  (0- -~_ l )Ugas 

Now suppose that the internal energy of the gas increases by an amount 
A Ugas. The preceding relation and energy conservation imply that the 
corresponding increases in the spring and reservoir energies are 

~ - 1  
zJ Uspring = -- ( 0 ~ - ~  1 ) A Ugas (3.3a) 

,dUres ik0o__ l J  AUgas (3.3b) 

To compute the change in entropy note that with X =  Vp 1/~176 we can express 
the volume in terms of X and U: 

V= X ~176176176 1)[( 7 -- 1 ) Ug~] -1/(00 1~ (3.4a) 

822/73/1-2-24 
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Substitution into (2.9) gives the entropy of the gas as 

Sgas = kBN (7-0o~ 
- 7  ----]- \0o - 1/ln(Ugas) +U(X, N) (3.4b) 

where f(X, N) is a simple function whose precise form is irrelevant to 
our discussion. If Tga~ is the gas temperature before the addition of the 
increment A Ugas, then the gas entropy increases by 

l (~?-- 00~ Q A UgasX~ 
ASgas=-Tga----~s\Oo__l J Ugasln l + - - ~ g ~ )  (3.5a) 

The reservoir is a reversible heat source at constant temperature, so its 
entropy increases by 

1 (7-- 0o'~ 
ASres=-'~res \O 0 - 1.11 AUg as (3.5b) 

The spring and its winding mechanism are assumed to constitute a revers- 
ible work source, so their entropies are unchanged. For 1 < 00 < ? we see 
that the total entropy can be made to increase without bound by having 
A Ugas approach -Ugas. Hence heat flows from the reservoir even as the 
gas expands and cools down; the excess energy goes into unwinding the 
spring. This is precisely the sort of instability that one expects from a 
system with negative heat capacity. 

4. BLACK BODY RADIATION WITH NEGATIVE HEAT 
CAPACITY 

So much for our mechanical contraption. Provided that the isothermal 
compressibility Xr is nonsingular, expression (2.8) gives the general 
solution for a constrant X(p, V) such that 

( y  - 0o~ 
Cx= - \ 0 o _ 1 / C v  

In fact negative heat capacities can be defined even for systems where both 
Kr and Cp = 7Cv are singular. To illustrate this fact, we consider blackbody 
radiation. A fundamental relation for this system is 

4 al/aV1/4U3/4 (4.1) s ( u ,  v)=~ 
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where a is the Stefan-Boltzmann constant. Some differentiations and 
rearrangements suffice to give the standard results: 

U= aVT 4 (4.2a) 

(4.2b) p = ] a T  4 

The latter implies that ~c T and Cp are infinite for this system. 
To obtain a negative heat capacity, let us again consider extensive 

constraints of the form 

X(p, V)= Vp 1/~ (4.3) 

By using (4.2b) to solve for T(V, X) and then substituting into (4.2a), we 
obtain the following expressions for V: 

V=(~ u)l/(1-~176176 T4)-I/~ (4.4) 

These relations allow us to write the entropy in terms of either U and X 
or T and X: 

4~ 
(4.5) 

To see that 0 can be chosen to make the system at fixed U and X unstable, 
we merely differentiate the first of these expressions twice: 

(4.6) ( 02S'~ 4 0 -  302 S 

Concavity obviously fails for 0 < 0 < 4/3. That this range of values also 
corresponds to a negative heat capacity follows from differentiation of the 
second incarnation of the entropy in (4.5): 

Of course the limit 0 ~ oo just recovers Cv. 

5. S T A T I S T I C A L  M E C H A N I C S  M O D E L S :  G E N E R A L I T I E S  

We stress that all of the preceding analysis was carried out using 
conventional thermodynamics, and, for special purposes, specific equations 
for the entropy--typically (2.9) and (4.1)--which follow from the canonical 
ensemble. We are therefore led to suggest that the whole process might be 
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profitably inverted when it is desired to study a system for which the con- 
ventional heat capacity C r  is negative. In this case the entropy S(U, Y) 
cannot be everywhere concave, and the canonical partition function cannot 
exist for all values of T and Y. One could always infer a fundamental 
relation for such a system by computing the number of states at fixed 
U and Y, but we feel it might be very much simpler to instead search 
for a new parameter X for which the noncanonical partition at fixed 
T'= (OS/OU)2c and J( exists. After a brief notational digression we shall 
discuss two explicit models which illustrate our suggestion. 

In order to deal with many different ensembles, we shall introduce a 
general notation based on that of Callen. (1~ Suppose that the natural 
extensive parameters of the entropic representation are the energy U and 
Y1,..., Yr. For each extensive parameter we define an intensive conjugate as 
follows: 

( ~ S )  (5.1a) 
F~ =- ~ rt,..., r~ 

F i  = - (5.1b) 
U, YI ,..., Y i -  l , Y/+ l,-.., Yr 

Of course Fo = 1/T, and the Fi associated with familiar parameters such as 
V and N have similar expressions in terms of the intensive parameters of 
the energetic representation. Just as one can Legendre transform the energy 
to obtain the various thermodynamic potentials, so one can Legendre 
transform the entropy to obtain the various Massieu functions. We shall 
denote them by the symbol S with the list of their natural intensive 
parameters appended in square brackets: 

q 
S[Fo, F1 ..... Fq]=-S-Fo U -  ~ FiYi, q<~r (5.2) 

i=1 

Note that one need not transform in order. For example, with r =  5 it 
would be perfectly valid to consider the Massieu function, S[F3, Fs]- -  
S - - F  3 Y 3 -  F5 Y5. 

The Massieu function S[Fo, F1 ..... Fq] is associated with the ensemble 
at fixed Fo, F1,...,Fq, Yq+l ..... Yr. Suppose that the system's quantum 
states are labeled by a generic quantum number c~ and that each such state 
has energy u(~) and Yi= yi(o O. The partition function associated with the 
ensemble at fixed Fo, F1,..., Fq, Yq + 1 ..... Yr is 

Z[Fo, F, ..... F q ] ( Y q +  1 ..... Yr) 

i=l  

X (~[ Y q + l  - -  Y q +  1((~) " ] ' ' "  •1- Y r  - -  y r ( ~ ) ]  (5.3) 
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With this notation Z(U, Y1,..., Yr) is just the degeneracy function of the 
microcanonical ensemble; Z[Fo](Y1,..., Yr) is the usual partition function 
of the canonical ensemble. The ensemble average of the expectation value 
of an operator (0 is 

<<~>>F0, ,Fq, ~q+l, , Yr 

exp{ - k ~  1 [r0u(c0 + ~2~=i Vi yi(~)] } 

Z[Fo, F,,..., Fq](Yq+ ,,..., Yr) 

X 6[ Yq+, -- yq+ ~(e)] ' '-  5[ Yr - yr(cQ] (5.4) 

The connection to thermodynamics derives from the relation 

S[Fo, F,,..., Fq]( Yq+ l,..., Yr) 

-- ku ln{Z[F0, F1,..., Fq](Yq+, ..... Yr)} + (subdominant terms) (5.5) 

The "subdominant terms" of the right-hand side are corrections to the 
leading-order approximation for the partition function in the method of 
steepest descent. (11) When the thermodynamic limit exists and is nonzero, 
these corrections typically scale as the logarithm of an extensive parameter 
divided by an extensive parameter and are negligible for large systems 
away from phase transitions. 

6. S P E C I F I C  S T A T I S T I C A L  M E C H A N I C S  M O D E L S  

Our first model consists of a system of N distinguishable interacting 
particles where the condition of the ith particle is represented by two non- 
negative integers, mi and ni. A state of this system is accordingly described 
by an 2N-plet of nonnegative integers. Suppose that there are two extensive 
parameters U and Y in addition to N. Suppose further that for the state 
]m, n ) these parameters are 

u(m, n) = (n,  + --. + t/N) ~;0 

y(m, n)= (ml + ... +mN) Y o - N c o s h ( ~ o - n O )  Yo 

(6.1a)  

(6.1b) 

where Co, Yo, and no are positive constants. The second term of the relation 
for y constitutes the interaction. It means that we cannot consider the total 
amount of y to result from independent contributions from each particle. 
In general the energy would also have this property, although it does not 
in this simple model. 
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Let us first observe that this system can have negative C r. If we fix the 

U = neo (6.2a) 

Y=myo-Ncosh -no Yo (6.2b) 

where m and n are nonnegative integers, then the microcanonical ensemble 
gives 

(N+n- 1)! (N+m- 1)! Z(U, Y, N)=  (6.3) 
n! ( N -  1)! m] ( N -  1)1 

Using Stirling's approximation to neglect the subdominant terms results in 
the following expression for the entropy: 

{ ( N )  ( + N m )  m (m) S=kRN I +  In 1 - F i n  

+ (1 + N )  In (1 + N ) - N l n  ( N ) }  (6.4) 

[We shall henceforth consider n and m to be continuous parameters whose 
relation to U and Y is given by (6.2).] The identity 

(~U)  1 (~n) 1 (n  ) ( ~ 3 )  = - -  +--s inh  - - - n 0  - -  (6.5) 
Y, N ~'0 m , N  eo N ~m n , N  

facilitates differentiating with respect to U at constant Y. The potential for 
instability emerges from two applications of this identity: 

(~U)rN=kBln(~s (6.6a) 
, 80 80 

~--U-~Jy, N = e~ n(n+N) ~ sinh F-no m(m+N) 
ks +Ne---~oCOSh(N-no) ln(~-~ ---N) (6.6b) 

At n = noN the second term of (6.6b) vanishes, and the third term can be 
made to dominate the first by choosing 

m<NIexP(no(n2+ l) ) -  ll -~ 

values of U and Y at 
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Of course a violation of concavity with respect to U at fixed Y and N 
implies that Cr  can become negative: 

Cy=Nks{In(~--~N-)+sinh(N-no)In(-m---~N)}2 
N2 

n(n + N) 

n ) N 2 
~-sinh2 N - n ~  m(m+N) 

cosh(  ' 

n = n o N  

ln2((no + 1)/no) 
) NkB (6.7b) 

1~no(no + 1) - In ((m + N)/m) 

A corollary is that the canonical partition function cannot exist for all T, 
since otherwise Cr  would be positive semidefinite by Eq. (1.1b). From 
direct examination of the putative partition function 

,=o n! ( N -  1)! 

F[ Y/Yo + N cosh(n/N- no) + N] 
x exp(-fl~on ) 

F[ r/yo + N cosh(n/N- no) + 1 ] ( N -  1 )! 

(6.8) 

we find that the sum fails to converge for kBT>~ [N/ (N-  1)] e0. 
Although it was possible to treat this system using the microcanonical 

ensemble, an equally valid approach is suggested by the fact that the 
entropy (6.4) is a concave function of U, X, and N, where we define 

- n o  Yo (6.9) 

One consequence of this is the existence of the noncanonical ensemble at 
! t . fixed F ,  = (OS/OU)x,N and Fx= (OS/OX)u,N. 

Z[F'., F:~] (N) 

= ~ ... ~, exp[ -k{ l (n ,+  . . . )eoF' , -k~ ' (m,+. . . )yoF~] (6.10a) 
m I ~ 0  n N = O  

= [1 -- exp(-- kff ~F'.eo)] -N [1 -- exp(--k~F'~yo)] -N (6.10b) 
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Of course this gives us the natural Massieu function of the ensemble: 

S[  F',, F" ] ( N) = - UkB {ln[ 1 -1 , - e x p ( - k  B F ,  e0)] 

+ ln[1 - e x p ( - k ~  1V~ Yo)] } (6.11) 

A straightforward application of thermodynamics allows us to recover the 
ensemble averages of the extensive variables: 

f~?s[r ' ,  F ' ] ~  _ N~ o (6.12a) 
u =  \ //F;,N -1 , exp(kB F , e o ) -  1 

{~?S[f ' ,  F '] ']  = Nyo (6.12b) 
X =  \ ~F" iF,u, N exp(k~lF'xYo) - 1 

Inverting to solve for the intensive variables and Legendre transforming 
should give the microcanonical entropy: 

S = S[F', ,  F'x] + F'u U+ V'xX (6.13a) 

X 

U 

Inserting relation (6.9) and comparing with (6.4) and (6.2) shows that we 
have indeed recovered the correct entropy. 

Note that although we first used the microcanonical partition function 
(6.3) to find the entropy (6.4), this was not necessary. We did it only for 
the pedagogical purpose of demonstrating the system's instability at fixed 
U, Y, and N using a conventional technique whose validity was not subject 
to question. Once the validity of noncanonical ensembles is accepted, such 
an appeal to the microcanonical ensemble is neither necessary nor 
desirable. Indeed, by varying the model only slightly, we can eliminate even 
the possibility of an exact microcanonical solution. Suppose, for example, 
that the extensive parameters have the following expressions in terms of the 
system's quantum numbers: 

u(m, n ) =  (nl + " -  +nN) e0 (6.14a) 

y ( m , n ) = ( m l +  .-. +mN) y o - N y o c o s h  ~ ( n i n i + l ) m - n o  (6.14b) 
i = 1  

where n N + l - n l .  Note that in this case we can still define 

x(m, n) -= (ml + .." + mN) Yo (6.15) 
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and compute the partition function Z[F'u, F2](N). In fact the result is 
identical to expression (6.11) above. Of course the parameter X will 
no longer relate to Y precisely as in (6.9), but the corrections will be 
subdominant in the thermodynamic limit. Therefore, we obtain the same final 
expression for the entropy in the thermodynamic limit. 

Aside from its contrived nature, one might criticize the model we have 
just considered on the grounds that X, not Y, is the "natural" extensive 
parameter for this system. Since the system is stable at fixed U, X, and N, 
it could be argued that we have done nothing beyond implementing at the 
level of statistical mechanics the purely thermodynamic considerations 
of Section 2. We do not agree. The correct identification of extensive 
parameters depend upon symmetries of the weak interactions which are 
typically neglected in statistical mechanics. It is entirely possible that con- 
sideration of the equilibration mechanism would reveal Y, not X, as the 
more natural extensive parameter. However, we prefer to shift the focus of 
the debate. The origin of instabilities which lead to negative heat capacity 
is an anomalously rapid growth in the density of states. We achieved this 
in the previous model by means of a second set of quantum numbers, 
the mi, such that at fixed Y the number of mi configurations grows 
exponentially with the energy. The same sort of instability can be attained 
by building interactions into the energy without involving a second exten- 
sive parameter. In this incarnation the utility of alternate ensembles is 
beyond dispute because no one can question the presence of U among the 
system's extensive parameters. 

The model we have in mind consists, as before, of N distinguishable, 
interacting particles. The states of this system are labeled by N independent 
quantum numbers ni, each of which runs over the nonnegative integers. 
The energy eigenvalues are 

i = l  

where eo is a positive constant. By fixing the value of U at 

where n is a nonnegative integer, we see that the degeneracy function is 

( N + n -  1)! 
Z(U, N ) -  (6.18) 

n! (W- 1)! 
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Using Stirling's approximation to neglect the subdominant terms results in 
the following expression for the entropy: 

{exp S=kBN\\Neo, ] [_\Neo,] 3--1} 
U 3/2 exp[  6,9, 

At large U and fixed N the first term dominates and one can see that 
although the temperature is positive, the heat capacity is not: 

1 {r 3kB (_N_~)m 
T2C=-\OU2}N ~>N~o '4Ne2 (6.20) 

It follows that the canonical partition function: 

Z ( N ) =  n ! ( N - 1 ) !  exp -fleo N In 1+  (6.2.1) 
n = 0  

cannot exist since otherwise Cy would have to be positive by relation 
(1.1b). Though it is not obvious, the sum in fact fails to converge for any 
temperature. 

Our alternate ensemble is based upon the extensive parameter X 
whose eigenvalues are 

N 

x(n) --= • ni (6.22) 
i = l  

The natural intensive variable conjugate to X is 

F"  - (6.23) 
N 

The simple ensemble to work with is at fixed F"  and N. Its partition 
function is 

Z[F'](N)=-- ~ ... ~ e x p [ - k ~ ' r ' x ( n ) J  (6.24a) 
nl = 0  nN=O 

= [ 1 -- exp( - k~ I F ' ) ]  - N (6.24b) 

The natural logarithm of this partition function gives kB 1 times the 
Massieu function at fixed F~ and N: 

S[F'xJ(N) = -NkB In[ 1 - exp( - k f f  ~F')]  (6.25) 
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Standard thermodynamics instructs us to solve for X-from the relation 

_(eS[F'](N)~ = 
X= \ gF" ]N 

N 

exp(k~ ~F') - 1 
(6.26) 

Legendre transformation gives the entropy: 

S -  S[F'](N) + F'xX 

= NkB ln [ ~-~--X~ + XkB ln [ Nx-----X ] 

(6.27a) 

(6.27b) 

Substitution of the relation 

C(253J2 
J f = N e x p  l_ \ Neo] j - N (6.28) 

shows that we indeed recover (6.19). 
Since an exact microcanonical treatment of this model was possible, 

it is a matter of taste as to whether or not the alternate ensemble gives a 
simpler derivation. By the following slight variation of the energy eigen- 
values we can eliminate the possibility of an exact microcanonical solution: 

i ~ l  

where again nN+ 1 ----= n 1. In this case finding the number of states at fixed U 
and N is no longer a simple combinatoric problem, if it can be done at all. 
However, we still have relation (6.28) in the thermodynamic limit of the 
ensemble at fixed F"  and N. We have therefore exhibited a system which 
is unstable when expressed in terms of the usual variables (U and N), and 
whose statistical mechanics is quite impenetrable with any of the usual 
ensembles. By choosing a different set of variables (X and N), we obtained 
a stable system whose statistical mechanics is trivial in terms of one of the 
natural ensembles of these variables. Although this model is rather simple, 
it does capture the same anomalously rapid growth in the density of states 
which is responsible for the instabilities of gravitational thermodynamics. 
(On a closed spatial manifold it is provably true that all the states of any 
theory with dynamical gravity are degenerate with zero energy!) Given the 
limitless possibilities for defining alternate ensembles, it is not without 
reason to hope that this technique will find some application for realistic 
systems. 



378 Landsberg and Woodard 

A C K N O W L E D G M E N T  

This work was part ial ly supported by D O E  contract  DE-FG05-86-  

ER40272, and  by the European  Thermodynamics  Network  through 
Cont rac t  E R B C H R X C T  920007. 

R E F E R E N C E S  

1. P. C. W. Davies, Rep. Prog. Phys. 41:1314 (1978); R.M. Wald, General Relativity 
(Chicago University Press, Chicago, 1984); D. Pav6n and P.T. Landsberg, Gen. Rel. 
Gray. 20:457 (1988). 

2. D. Lynden-Bell and R. M. Lynden-Bell, Mon. Not. Astron. Soc. 181:405 (1977); P. Hertel 
and W. Thirring, Ann. Phys. (N.Y.) 63:520 (1971). 

3. R. A. Smith and T. M. O'Neil, Phys. Fluids B 2:2961 (1990). 
4. P. T. Landsberg, J. Stat. Phys. 35:159 (1984); D. C. Wright, Phys. Rev. D 21:884 (1980). 
5. F. Schl6gl, Z. Phys. 267:77 (1974). 
6. P.T. Landsberg, Thermodynamics and Quantum Statistical Illustrations (Interscience, 

New York, 1961). 
7. V. J. Menon and D. C. Agrawal, Phys. Lett. 139A:130 (1989). 
8. R. Emden, Gaskugeln (Teubner, Leipzig, 1907). 
9. R. Emden, Encycl. d. Math. Wiss., Vol. VI, 2.B (Teubner, Leipzig, 1922-1934), 

pp. 373-532; S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Chicago 
University Press, Chicago, 1939). 

10. H. B. Callen, Thermodynamics and An Introduction to Thermostatistics, 2nd ed. (Wiley, 
New York, 1987). 

11. P. M. Morse and H. Feshbach, Methods of Theoretical Physics I (McGraw-Hill, 
New York, 1953), pp. 434443. 


